Acid-sensing ion channel 3 (ASIC3) cell surface expression is modulated by PSD-95 within lipid rafts.

نویسندگان

  • Jayasheel O Eshcol
  • Anne Marie S Harding
  • Tomonori Hattori
  • Vivian Costa
  • Michael J Welsh
  • Christopher J Benson
چکیده

Acid-sensing ion channel 3 (ASIC3) is a H(+)-gated cation channel primarily found in sensory neurons, where it may function as a pH sensor in response to metabolic disturbances or painful conditions. We previously found that ASIC3 interacts with the postsynaptic density protein PSD-95 through its COOH terminus, which leads to a decrease in ASIC3 cell surface expression and H(+)-gated current. PSD-95 has been implicated in recruiting proteins to lipid rafts, which are membrane microdomains rich in cholesterol and sphingolipids that organize receptor/signaling complexes. We found ASIC3 and PSD-95 coimmunoprecipitated within detergent-resistant membrane fractions. When cells were exposed to methyl-beta-cyclodextrin to deplete membrane cholesterol and disrupt lipid rafts, PSD-95 localization to lipid raft fractions was abolished and no longer inhibited ASIC3 current. Likewise, mutation of two cysteine residues in PSD-95 that undergo palmitoylation (a lipid modification that targets PSD-95 to lipid rafts) prevented its inhibition of ASIC3 current and cell surface expression. In addition, we found that cell surface ASIC3 is enriched in the lipid raft fraction. These data suggest that PSD-95 and ASIC3 interact within lipid rafts and that this raft interaction is required for PSD-95 to modulate ASIC3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PSD-95 and Lin-7b interact with acid-sensing ion channel-3 and have opposite effects on H+- gated current.

The acid-sensing ion channel-3 (ASIC3) is a degenerin/epithelial sodium channel expressed in the peripheral nervous system. Previous studies indicate that it participates in the response to mechanical and painful stimuli, perhaps contributing to mechanoreceptor and/or H+ -gated nociceptor function. ASIC3 subunits contain intracellular N and C termini that may control channel localization and fu...

متن کامل

The multivalent PDZ domain-containing protein CIPP is a partner of acid-sensing ion channel 3 in sensory neurons.

Acid-sensing ion channels (ASICs) are cationic channels activated by extracellular pH. They are present in the brain, where they are thought to participate in signal transduction associated with local pH variations, and in sensory neurons, where they have been involved in pain perception associated with tissue acidosis and in mechanoperception. The ASIC3 subunit is mainly expressed in dorsal ro...

متن کامل

ASIC2 Subunits Facilitate Expression at the Cell Surface and Confer Regulation by PSD-95

Acid-sensing ion channels (ASICs) are Na+ channels activated by changes in pH within the peripheral and central nervous systems. Several different isoforms of ASICs combine to form trimeric channels, and their properties are determined by their subunit composition. ASIC2 subunits are widely expressed throughout the brain, where they heteromultimerize with their partnering subunit, ASIC1a. Howev...

متن کامل

ASIC2a-dependent increase of ASIC3 surface expression enhances the sustained component of the currents

Acid-sensing ion channels (ASICs) are proton-gated cation channels widely expressed in the nervous system. Proton sensing by ASICs has been known to mediate pain, mechanosensation, taste transduction, learning and memory, and fear. In this study, we investigated the differential subcellular localization of ASIC2a and ASIC3 in heterologous expression systems. While ASIC2a targeted the cell surfa...

متن کامل

Acid-sensing ion channel 1a regulates the survival of nucleus pulposus cells in the acidic environment of degenerated intervertebral discs

Objective(s): Activation of acid-sensing ion channel 1a (ASIC1a) is responsible for tissue injury caused by acidosis in nervous systems. But its physiological and pathological roles in nucleus pulposus cells (NPCs) are unclear. The aim of this study is to investigate whether ASIC1a regulates the survival of NPCs in the acidic environment of degenerated discs. Materials and Methods: NPCs were i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 295 3  شماره 

صفحات  -

تاریخ انتشار 2008